Et₃N.2HF, A NEW CONVENIENT REAGENT FOR NUCLEOPHILIC FLUORINE DISPLACEMENT REACTIONS

M. B. GIUDICELLI, D. PICQ⁺ and B. VEYRON

Laboratoire de Chimie Organique 3, associé au CNRS, Bât 303, Université Claude Bernard Lyon I, 43 B^d du 11 Novembre, 69622 Villeurbanne, France

<u>Summary</u>: Syntheses of fluoro compounds by nucleophilic substitution of bromides or methanesulfonates using $Et_3N.2HF$ as the reagent are reported. The formation of undesired elimination side products is limited. The synthesis of this new fluorinating reagent is also reported.

Many methods have been developed for introducing fluorine into an organic compound¹ and numerous of them consist of reaction of ionic fluoride by nucleophilic substitution. When the nucleophilicity of the fluoride ion is increased, the basicity is also increased and therefore involves the formation of elimination products.²

 $R^1R^2CH-CHXR^3$ $\xrightarrow{F^-}$ $R^1R^2C=CHR^3 + R^1R^2CH-CHFR^3$

Recently, Cousseau *et al*³ have reported that polymer supported dihydrogen trifluoride $P^+H_2F_3^-$ (P^+ =cationic part of a macroreticular basic anion-exchange resin Amberlyst A 26 or Amberlite IRA 900) provided good yields of fluoro substitution without exhibiting any important basic character.⁴ We describe here a new fluorinating reagent, Et₃N.2HF (prepared *in situ* from Et₃N.3HF⁵ and Et₃N), which is not very basic.

In our laboratory, we are developing a program to synthesize α,β aminofluorosugars by nitrogen atom participation⁶ and a moderated neutral nucleophilic fluorinating reagent was needed because many carbohydrates are very sensitive to basic or acidic conditions. For example we wanted to obtain a 3,6-difluoroglucosamine derivative $\underline{3}$ in one step starting from $\underline{1}$ (scheme). When Et₃N.3HF was used, compound $\underline{2}$ was isolated in good yield, but the fluorinating reagent was not nucleophilic enough to give $\underline{3}$; other reagents such as $R_4N^+HF_2^-$ were too basic and led to tars due to the axial 4-OMs (elimination of MsOH gave a very unstable enamine). $\underline{3}$ was synthesized by treatment of $\underline{2}$ with Et₄N⁺HF₂⁻ (the 4-OMs is equatorial and the elimination is unfavoured), but we found that on addition of Et₃N to the Et₃N.3HF complex it was possible to obtain $\underline{3}$ in one step starting from $\underline{1}$ in good yield.⁷ In the literature various proportions of amines and HF have been previously described⁸, but the previous studies did not attribute any difference of selectivity to the stoichiometry of the system, so we tried to understand why Et₃N addition to the Et₃N.3HF complex enhanced its nucleophilicity. We supposed that a new complex was formed and two possibilities were considered :

$Et_3N.3HF + 2 Et_3N$		3 [Et ₃ N.HF]	(A)
2 [Et ₃ N.3HF] + Et ₃ N	>	3 [Et ₃ N.2HF]	(B)

Scheme

When Et_3N was added to the $Et_3N.3HF$ complex without solvent, russian authors^{8a} had observed the formation of a liquid of structure $Et_3N.2HF, 0.1H_2O$ and Aranda^{8b} the formation of a very unstable "diacidic" solid which rapidly turned black and was not further studied. For our part we have noted that the reaction was exothermic and a very hygroscopic white solid was formed. A titration of both $Et_3N.3HF$ and the white solid was carried out according to Fluka's procedure (0.5 N NaOH and phenolphtalein as indicator). We found two "free HF" for $Et_3N.3HF$ (like Fluka : approx. 24 % free HF) and one for the solid complex in accord with equation (B). We also mixed $Et_3N.3HF$ with a three molar ratio of Et_3N and the mixture was submitted to evaporation under vacuum (15 Torr) at room temperature in presence of P_2O_5 until the weight was constant. Stoichiometrically this weight was also in accord with equation (B). When the solid $Et_3N.2HF$ was heated in a drying pistol (15 Torr, 65°C), it lost Et_3N and gave back $Et_3N.3HF$; hence we considered that, depending on the temperature, pressure, solvent, etc..., an equilibrium between the two complexes was possible as follows :

$$Et_3N.3HF + Et_3N \longrightarrow Et_3N.2HF$$

An NMR study (solvent : CD_3CN) has shown that a small amount of Et_3N is sufficient to shift the signal of ¹⁹F and it is only after three equivalents that δ ¹⁹F becomes constant (and not for 0.5 equivalent). These two observations support the assumption of an equilibrium. In order to explain these peculiarities, we studied the fluorination of $C_6H_5(CH_2)_3OMs$ as a model with different reagents : $Et_4N^+HF_2^-$ [prepared from $Et_4N^+F^-$, $2H_2O$ heated at 77° (2 Torr) for 24 h⁹]; $Et_3N.3HF$ (Fluka); $Et_3N.3HF + Et_3N$; $Et_3N.HF$ (Aldrich). Kinetic results showed that $Et_4N^+HF_2^-$ to be better than $Et_3N.3HF/Et_3N$ better than $Et_3N.3HF$ very much better than $Et_3N.HF$ (Table 1). $Et_4N^+HF_2^-$ is regarded as a very good fluorinating reagent, but these results proved $Et_3N.3HF/Et_3N$ is more nucleophilic than $Et_3N.3HF$ [using $Et_3N.HF$ we did not obtain $C_6H_5(CH_2)_3F$ (<5 % by glc) and starting material was recovered].

Table 1

Yield of $\phi(CH_2)_3F$ obtained by treatment of $\phi(CH_2)_3OMs$ by 10 equivalents of the fluorinating reagent (CH₃CN, 80 °C) calculated by glc with ϕ tBu as standard (Carbowax 20 M, l = 1.4 m, t° = 80 °C, P = 1.2 bar)

time (h)	Et ₃ N.3HF	Et ₃ N.3HF/Et ₃ N	Et ₄ N ⁺ HF ₂ ⁻	Et ₃ N.HF
0.25			100	
0.5			100	
1.25		5		
2.5		27		
6.5	5.5	52		
11	12			
20	20	81		
38	44			<5
54	74			
79	90	98		
103	100	98		<5
151	100			<5

These first studies led us to test the reactivity of this new complex and to compare its nucleophilic power with that of Cousseau's reagent.³ Table 2 shows that for the two bromoketones PhCOCBrRMe (R = H, Me), our results were close of Cousseau's and the reaction time was significantly reduced; for the secondary nonactivated -CHX- groups, it is worth knowing that the reaction times were lower and the selectivity was better for X = OMs than for X = Br.

In conclusion, we think that $Et_3N.2HF$ (easily available from two commercial compounds) is a better fluorinating reagent than $Et_3N.3HF$ and is a useful alternative to $P^+H_2F_3^-$ (harder to prepare) for nucleophilic substitutions.

<u>General procedure</u>: To 0.01 mol of starting material dissolved in CH_3CN (5 mL) was added $Et_3N.3HF$ (2.1 equ.) and Et_3N (1 equ.). The mixture was heated at 80 °C under stirring and monitored by T.L.C. (for the reaction times, see table 2). After cooling to room temperature, the mixture was poured into a saturated aqueous sodium hydrogen carbonate solution (100 mL) and ether (100 mL). The organic layer was washed twice with water (50 mL), dried (Na₂SO₄) and evaporated ; then the crude reaction mixture was analyzed by NMR. The obtained products were purified by column chromatography on silica gel (light petroleum-ether) for identification and were in accordance with data from literature.^{3,10}

Stanting compound	Time (h)	% Reaction products (lit. ³)		
Starting compound		Fluoro	Ethylenic	
PhCOCHBrMe	1.5	91 ^a (93)	0	
PhCOCBrMe2	20	50 ^b (54)	50 ^b (33)	
2-OMs-Octane	36	90 ^b (49)	7 ^{b,c} (18)	
3β-OMs-5α-Cholestane ^d	95 ^e	50 ^b (70)	33 ^{b, f} (30)	
2-OMs-4-Phenylbutane	70	79 ^a ,g	₁₃ a,g,h	
2-Bromooctane	122	48 ^b (30)	14 ^{b,c} (10)	
2-Bromo-4-phenylbutane	142 ^e	40 ^a ,g	28 ^a ,g,h	

a : isolated yields ; b : yields determined by ^1H NMR ; c : only 2-octene ; d : the solvent is diglyme and the temperature is 120 °C (with CH_3CN at 80 °C, reaction was not complete after 14 days) ; e : 5 % starting material recovered ; f : Δ -2 and Δ -3 cholestene ; g : see ref. 10 ; h : mixture of three ethylenic compounds.

References and notes

1. For recent reviews see for example J. T. Welch, *Tetrahedron*, 1987, <u>43</u>, 3123 ; S. Rozen and R. Filler, *Tetrahedron*, 1985, <u>41</u>, 1111 ; "Synthesis of Fluoroorganic compounds" (Ed. I. L. Knunyants and G. G. Yakobson, Springer-Verlag, Berlin, 1985).

C. L. Liotta and H. P. Harris, J. Amer. Chem. Soc., 1974, <u>96</u>, 2250; D. Landini, F. Montanari and F. Rolla, Synthesis, 1974, 428; G. Cainelli, F. Manescalchi and M. Panunzio, Synthesis, 1976, 472; S. Colonna, A. Re, G. Gelbard and E. Cesarotti, J. Chem. Soc. Perkin Trans I, 1979, 2248; P. Bosch, F. Camps, E. Chamorro, V. Gasol and A. Guerrero, Tetrahedron Lett., 1987, <u>28</u>, 4733.

3. J. Cousseau and P. Albert, J. Org. Chem., 1989, 54, 5380.

4. P. Albert and J. Cousseau, J. Chem. Soc. Chem. Commun., 1985, 961 ; J. Cousseau and P. Albert, Bull. Soc. Chim. Fr., 1986, 910.

5. Et₃N.3HF is not nucleophilic enough for introducing fluorine. Using PhCOCBrMe₂ as starting material, after 4 days only 60 % was converted (*cf* table 2).

- 6. D. Picq, D. Anker, C. Rousset, and A. Laurent, Tetrahedron Lett., 1983, 24, 5619.
- D. Picq, I. Drivas, G. Carret, D. Anker, and M. Abou-assali, Tetrahedron, 1985, 41, 2681.
- D. Picq, and D. Anker, J. Carbohydr. Chem., 1985, 4, 113.
- 7. P. Nebois, D. Picq, and D. Anker, J. Carbohydr. Chem., 1990, 2, 359.
- 8. a) A. A. Lipovskii, and S. A. Nikitina, Zh .Neorg. Khim., 1965, 10, 176.
- b) G. Aranda, Thesis, Paris July 4th 1967.
- c) G. Aranda, J. Jullien, and J. A. Martin, Bull. Soc. Chim., 1965, 1890 and 1966, 2850.
- 9. R. K. Sharma, and J. L. Fry, J. Org. Chem., 1983, 48, 2112.
- 10. N. R. Davies, A. D. DiMichiel, and V. A. Pickles, Aust. J. Chem., 1968, 21, 385;

NMR C₆H₅CH_aH_bCH_cH_dCHFCH₃: ¹H (300 MHz, CDCl₃, J in Hz) & 7.25 (m, 5H, Ar) 4.65 (dddq, 1H,

- CHF, J_{HF}=48.8, J_{HCH3}=6.3, J_{HHc}=4.1, J_{HHd}=8) 2.80 (ddd, 1H, Ha, J_{HaHc}=9.8, J_{HaHd}=5.5,
- J_{HaHb}=13.9) 2.68 (ddd, 1H, Hb, J_{HbHc}=9.4, J_{HbHd}=7) 2.07-1.70 (m, 2H, Hc, Hd) 1.34 (dd, 3H, CH₃,

J_{HF}=23.9); ¹³C 90.0 (<u>C</u>HF, J_{CF}=165) 38.6 (<u>C</u>H_cH_d, J_{CF}=20.9) 31.3 (<u>C</u>H_aH_b, J_{CF}=4.8) 21.0 (<u>C</u>H₃,

 $J_{CF}=22.9$; ¹⁹F (CFCl₃) 96.5 (dddq, ²J_{HF}=48, ³J_{HF}=30.3 and 15.6, ³J_{FCH3}=24).

(Received in France 13 July 1990)

Table 2